## If (tanA - tanB) = **x and** (cotB - cotA) = **y** , then cot(A - **B**) is - Toppr

Click here👆to get an answer to your question ✍️ If (tanA - tanB) = **x and** (cotB - cotA) = **y** , then cot(A - **B**) is.

## Show that the line **x**/a + **y**/**b** = 1 touches the curve **y** = **b**. e - Toppr

Click here👆to get an answer to your question ✍️ Show that the line **x**/a + **y**/**b** = 1 touches the curve **y** = **b**. e^-**x**/a at the point where the curve intersects ...

## If (a + bx)e^**y**/**x** = **x** , then prove that **x**^3 d^2ydx^2 = ( **x** dydx-**y** )^2

Click here👆to get an answer to your question ✍️ If (a + bx)e^**y**/**x** = **x** , then prove that ... Solve any question of Continuity **and** Differentiability with:-.

## Let A = {**x**, **y**, z} **and B** = {1, 2} . Find the number of relations ... - Toppr

Click here👆to get an answer to your question ✍️ Let A = {**x**, **y**, z} **and B** = {1, 2} . Find the number of relations from A to **B** .

## If the curve **y** = a ^ **x and y** = **b** ^ **x** intersect at angle alpha then, tan ...

Click here👆to get an answer to your question ✍️ If the curve **y** = a ^ **x and y** = **b** ^ **x** intersect at angle alpha then, tan alpha =

## Let R = {(**x**, **y**) : **x**, **y**∈ Z, **y** = 2x - 4} . If (a - Toppr

Click here👆to get an answer to your question ✍️ Let R = {(**x**, **y**) : **x**, **y**∈ Z, **y** = 2x - 4} . If (a, - 2) **and** (4, **b**^2)∈ R , then write the values of a **and** ...

## If cos^-1 (yb) = log (xn)^**x** , then **x**^2y2 + xy1 = - Toppr

If cos−1(**by**)=log(**nx**)**x**, then **x**2**y**2+**xy**1= A. **n**2**y**. **B**. −**n**2**y**. C. **y**2. D. **y**. Hard. Open in App Open_in_app. Solution. Verified by Toppr. Correct option is **B**) ...

## Let **x**^k + **y**^k = a^k,(a,k > 0) **and** dydx + (**yx**)^1/3 = 0 , then k is : - Toppr

Click here👆to get an answer to your question ✍️ Let **x**^k + **y**^k = a^k,(a,k > 0) **and** dydx + ... Correct option is **B**) ... Continuity **and** Differentiability.

## sec ^2theta = 4xy(**x** + **y**)^2 is true if **and** only if - Toppr

sec2θ=(**x**+**y**)24**xy** is true if **and** only if. A. **x**+**y** =0. **B**. **x**=**y**,**x** =0. C. **x**=**y**. D. **x** =0,**y** =0. Hard. Open in App Open_in_app. Solution. Verified by Toppr.

## If dydx = 1 + **x** + **y** + xy **and y**( - 1) = 0, then function **y** is - Toppr

If d**x**d**y**=1+**x**+**y**+xy **and y**(-1)=0, then function **y** is. A. e(1−**x**)2/2. **B**. e(1+**x**)2/2−1. C. loge(1+**x**)−1. D. 1+**x**. Medium. Open in App Open_in_app. Solution.