## If a,**b**,c are in AP **and x**,**y**,z are in GP, prove that - Toppr

Click here👆to get an answer to your question ✍️ If a,**b**,c are in AP **and x**,**y**,z are in GP, prove that **x**^**b** - c.y^c - a.z^a - **b** = 1.

## If **X** = { a, **b**, c, d } **and Y** = { f, **b**, d, g} , find(i) **X** - **Y** (ii) **Y** - Toppr

Click here👆to get an answer to your question ✍️ If **X** = { a, **b**, c, d } **and Y** = { f, **b**, d, g} , find(i) **X** - **Y** (ii) **Y** - **X** (iii) **X** ∩ **Y**.

## If **x** = ∑ **n** = 0^∞ a^**n**, **y** = ∑ **n** = 0^∞ **b**^**n** , z = ∑ **n** = 0^∞ c^**n** ... - Toppr

Click here👆to get an answer to your question ✍️ If **x** = ∑ **n** = 0^∞ a^**n**, **y** = ∑ **n** = 0^∞ **b**^**n** , z = ∑ **n** = 0^∞ c^**n** where a, **b**, c are in AP **and** |a |<1, ...

## If **x**^m.y^**n** = ( **x** + **y** )^m + **n** , then dydx = - Toppr

Click here👆to get an answer to your question ✍️ If **x**^m.y^**n** = ( **x** + **y** )^m + **n** , then dydx =

## If sets A **and B** are defined as A = {(**x**, **y**):**y** = 1x, 0≠ **x** ∈ R ... - Toppr

**y**=**x**1⇒**xy**=1. ∴ A is the set of all points on the rectangular hyperbola. **xy**=1 with branches in I **and** III quadrants, **y**=−**x** represents a line with slope ′−1′ **and** ...

## If a^**x** = **b**^**y** = c^z **and b**^2 = ac , then the value of **y** is equal to - Toppr

Click here👆to get an answer to your question ✍️ If a^**x** = **b**^**y** = c^z **and b**^2 = ac , then the value of **y** is equal to.

## Solve: **x** + **y** = a + **b and** ax - by = a^2 - Toppr

Click here👆to get an answer to your question ✍️ Solve: **x** + **y** = a + **b and** ax - by = a^2 - **b**^2 .

## In equation **y** = **x**^2 cos^22 pi betay'alpha , if the units of **x** ... - Toppr

Click here👆to get an answer to your question ✍️ In equation **y** = **x**^2 cos^22 pi betay'alpha , if the units of **x**,alpha,beta are m,s^-1 **and** (ms^-1)^-1 ...

## In the figure XY **and X**'**Y**' are two parallel tangents to a circle ... - Toppr

... parallel tangents to a circle with centre O **and and** another tangent AB with point of contact C interesting XY at A **and X**'**Y**' at **B** prove that AOB = 90^0 .

## Algebraic Formula Sheet

**x y**. ) -**n**. = ( **y x**. )**n**. = yn xn x0 = 1, **x** = 0. ( **x y**. )**n** ... **n**. √ xn = |**x**|, if **n** is even. Properties of Inequalities. If a<**b** then a + c<**b** + c **and** a − c<**b** ...